
Deterministic Rounding for Facility Location1

• In this lecture, we look at LP-rouding algorithms for the (uncapacitated) facility location, aka UFL,
problem. Recall, in the UFL problem, we are given a set F of facilities, a set C of clients, and a metric
d(·, ·) in F ∪ C. Each facility i ∈ F has an opening cost fi. The objective is to open X ⊆ F and
connect clients to the nearest open facility via assignment σ : C → X so as to minimize

cost(X) =
∑
i∈X

fi +
∑
j∈C

d(σ(j), j) (1)

• LP Relaxation. Here is a natural LP-relaxation for UFL.

lp := minimize
∑
i∈F

fiyi +
∑

i∈F,j∈C
d(i, j)xij (UFL-LP)

∑
i∈F

xij ≥ 1, ∀j ∈ C (2)

yi − xij ≥ 0, ∀i ∈ F, ∀j ∈ C (3)

xij , yi ≥ 0, ∀i ∈ F, j ∈ C

Let (x, y) be a fractional solution to the above LP. We define some notation. Let FLP :=
∑

i∈F fiyi.
Let Cj :=

∑
i∈F d(i, j)xij . Let CLP =

∑
j∈C Cj . Thus, lp = FLP + CLP. We now show a rounding

algorithm which returns a solution of cost at most 4(FLP + CLP ) ≤ 4opt.

The rounding algorithm proceeds in two stages. The first stage is called filtering which will “take
care” of the xij’s, the second stage is called clustering which will “take care” of the yi’s.

• Filtering. Given a client j, order the facilities in increasing order of d(i, j). That is, d(1, j) ≤
c(2, j) ≤ · · · ≤ d(n, j) where n = |F |. The fractional cost of connecting j to the facilities is Cj ; our
goal is to make sure that in the final solution, client j doesn’t pay “much more” than Cj . To this end,
given a parameter ρ > 1 (which we will set later) define

Nj(ρ) := {i ∈ F : d(i, j) ≤ ρ · Cj} (4)

Note it is possible that xij > 0 for some i /∈ Nj(ρ). However, we can massage the solution (x, y) so
that j is fractionally connected only to facilities in Nj(ρ).

Define (x̂, ŷ) as follows. ŷi = ρ
ρ−1 · yi for all i ∈ F . For all j ∈ C, set

x̂ij =

{
ρ
ρ−1 · xij if i ∈ Nj(ρ)

0 otherwise
(5)

Claim 1. (x̂, ŷ) satisfies (2) and (3)
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Proof. Let us consider the sum Cj =
∑

i d(i, j)xij =
∑

i∈Nj(ρ)
d(i, j)xij +

∑
i/∈Nj(ρ)

d(i, j)xij .
Since d(i, j) > ρ · Cj for all i /∈ Nj(ρ), we get

∑
i/∈Nj(ρ)

xij <
1
ρ , for otherwise the second term in

the RHS above exceeds Cj . This implies
∑

i∈Nj(ρ)
xij ≥ (1− 1

ρ) implying
∑

i∈Nj(ρ)
x̂ij ≥ 1. (x̂, ŷ)

satisfy (3) by definition.

• Clustering. In the next step, we partition the facilities such that the ŷ-mass in each part is at least
1. The rounding algorithm would open the cheapest facility in each part. To find the partition, we
proceed iteratively. Initially, all clients are uncovered and comprise the set U . In the beginning of
each iteration, we choose the uncovered client j ∈ U with the smallest Cj . We add this client j to
a “representative set” R, and define Fj := {i ∈ F : x̂ij > 0}. That is, Fj is the set of facilities
which “serve” client j in the massaged solution (x̂, ŷ). Next, and this is a crucial step, we remove any
uncovered client ` ∈ U such that x̂i` > 0 for any i ∈ Fj . In English, we remove any uncovered client
which is fractionally served by any facility in Fj in the massaged solution (x̂, ŷ). We continue till the
set U becomes empty, that is, all clients are covered. Two key observations follow.

Claim 2. The sets {Fj : j ∈ R} are pairwise disjoint.

Proof. Suppose not, and say i ∈ Fj ∩F` and ` entered the setR later. In that case, x̂i` > 0 and i ∈ Fj .
This is a contradiction as ` should have been removed from U in the iteration in which j was added
to R.

Claim 3. For any j ∈ R,
∑

i∈Fj
ŷi ≥ 1.

Proof. Once again, the key observation is that
∑

i∈Fj
x̂ij ≥ 1. This follows from Claim 1 because

Fj contains all the facilities i such that x̂ij > 0. Otherwise, j would not be in R. And thus, since
ŷi ≥ x̂ij , the claim follows.

• Algorithm. The rounding algorithm is now almost complete : open the cheapest facility in each Fj for
J ∈ R and connect each client to the closest open facility.

1: procedure UFL-ROUNDING(F ∪ C, fi, d(i, j)):
2: Solve (UFL-LP) to obtain (x, y).
3: Define Nj(ρ) for all j ∈ C as in (4). . ρ = 4/3 gives the 4-appx
4: Define x̂ as in (5)
5: . Next form the partitions
6: U ← C, R← ∅.
7: while U 6= ∅ do:
8: Find j ∈ U with smallest Cj and R← R ∪ j.
9: Fj ← {i ∈ F : x̂ij > 0}.

10: Remove all ` ∈ U such that x̂i` > 0 for any ` ∈ Fj . . We let j ∈ R be responsible for
these clients.

11: For each j ∈ R, open the facility i ∈ Fj with smallest fi.
12: Every client connects to nearest facility.
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Theorem 1. UFL-ROUNDING returns a 4-approximation for metric UFL when ρ = 4/3.

Proof. Let Falg and Calg be the facility opening and connection costs of the above algorithm. We
show that Falg ≤ ρ

ρ−1FLP and Calg ≤ 3ρlp. When ρ = 4/3, we get alg = Falg + Calg ≤ 4lp, and this
explains the choice of ρ.

Since we open the cheapest facility in ij ∈ Fj and since
∑

i∈Fj
ŷi ≥ 1, we get that fij ≤

∑
i∈Fj

fiŷi.
Since the Fj’s are pairwise disjoint for j ∈ R, we get Falg ≤

∑
i∈F fiŷi =

ρ
ρ−1FLP by definition of ŷ.

Fix a client j. If j ∈ R, then indeed we open a client in Nj(ρ). Therefore, the connection cost that
j pays is at most ρCj . Consider a client ` /∈ R. Let j ∈ R be the representative responsible for `.
Firstly, we can assert Cj ≤ C` because of Line 8. Let i` ∈ Fj be the facility such that x̂i`` > 0 which
removed ` from U . Let ij ∈ Fj be the facility that is open; ij may or may not be i`. Now note that
the connection cost of ` is at most

d(`, ij) ≤ d(`, j) + d(j, ij) ≤ d(`, i`) + d(i`, j) + d(j, ij)

where we have used the metric property of d. Now, d(`, i`) ≤ ρC` since i` ∈ N`(ρ). And the last
two terms d(i`, j) ≤ ρCj and d(j, ij) ≤ ρCj . And then using the fact that Cj ≤ C`, we get that the
connection cost of client ` ≤ 3ρC`. Altogether, we get Calg ≤ 3ρCLP, proving the theorem.

Exercise: KK
Recall the k-median problem: in this problem we are given the two sets F ∪ C and a metric

connection costs d(·, ·) over these points. The objective is to open k facilities such that the sum of
connection costs of clients to open facilities is minimized. Write a natural LP relaxation for the problem.
Describe a rounding algorithm which is allowed to open αk facilities and has total connection cost at
most βlp, where α, β are some fixed constants (as small as possible).

Notes

The algorithm described here is the first constant factor approximation algorithm for UFL. This can be found
in the paper [6] by Shmoys, Tardos, and Aardal. Indeed, the paper describes a better approximation factor
of 3.16 which can be obtained by choosing ρ cleverly. The first constant factor approximation algorithm for
the k-median problem follows a similar route as above and can be found in the paper [2] by Charikar, Guha,
Shmoys, and Tardos. This paper gives a 62

3 -approximation for the special case when F = C. The current
best approximation factors for UFL is 1.488 in the paper [5] by Li, and for k-median is 2.625 in the paper [1]
by Byrka, Pan, Rybicki, Srinivasan, and Trinh. It is known that unless P = NP , the approximation factors
can’t be below than 1.463 for UFL and 1.735 for k-median. These can be found in the papers [3] and [4],
respectively.
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